Геометрия физического пространства

Объективные, естественные, а не писаные нами, законы Природы просты до гениальности. Но их действие столь повсеместно и столь неотвратимо, что эта простота воспринимается нами, как изощренность, хотя и не злонамеренность. Действие законов Природы не зависит от степени их понимания, взглядов, желаний, соотнесения их к той или иной научной дисциплине. Этот постулат делает необходимой принципиальную открытость любой из наук, в том числе и физики, науки о наиболее общих законах движения материи. И чтобы говорить об этих самых "наиболее общих законах", следует предварительно разобраться с предметом изучения — с материей и движением. Эти первичные для физики понятия не могут быть постулированы в ее рамках, что делало бы физику закрытой системой знаний со всеми, вытекающими отсюда печальными для нее последствиями, а должны быть заимствованы. Исходить следует из принципа единства научного знания в силу общности, единственности изучаемой всеми научными дисциплинами сущности — Природы. Для физики такими источниками первичных понятий могут быть геометрия, наука о наиболее общих свойствах пространств, информатика, вернее, наиболее фундаментальные понятия об информации того сонма наук, что имеют общий "информ-корень", но на первое место следует поставить философию, "науку всех наук".

Настоящая работа, хотя и написана в своей основе существенно раньше "Формализации философских понятий", базируется на ней, является ее следствием и необходимым продолжением. Из положений "Формализации…" следует, что наблюдаемое пространство может быть только действительным с объектами, представляющими собой дифференцируемые действительные множества неособых, невыделенных между собой точек, обладающие ненулевыми инвариантами. Все остальные множества будут ненаблюдаемыми. Однако, вполне вероятно, что Природа широко использует математический аппарат теории рядов, что позволяет существенно расширить наблюдаемый ряд композитами.

Несомненно, аналогичный подход имеет место и в структурном анализе наблюдаемого ряда множеств. Другими словами, должен наблюдаться лишь структурно неособый, невыделенный ряд множеств. Практически единственным классом множеств, полностью отвечающим вышеперечисленным условиям наблюдаемости, является класс овальных множеств.

Эти положения и легли в аксиоматическую часть настоящей работы.

Корпоративные мероприятия для предприятий и организаций.